11 research outputs found

    On Analysis of Lightweight Stream Ciphers with Keyed Update

    Get PDF
    As the need for lightweight cryptography has grown even more due to the evolution of the Internet of Things, it has become a greater challenge for cryptographers to design ultra lightweight stream ciphers in compliance with the rule of thumb that the internal state size should be at least twice as the key size to defend against generic Time-Memory-Data Tradeoff (TMDT) attacks. However, recently in 2015, Armknecht and Mikhalev sparked a new light on designing keystream generators (KSGs), which in turn yields stream ciphers, with small internal states, called KSG with Keyed Update Function (KSG with KUF), and gave a concrete construction named Sprout. But, currently, security analysis of KSGs with KUF in a general setting is almost non-existent. Our contribution in this paper is two-fold. 1) We give a general mathematical setting for KSGs with KUF, and for the first time, analyze a class of such KSGs, called KSGs with Boolean Keyed Feedback Function (KSG with Boolean KFF), generically. In particular, we develop two generic attack algorithms applicable to any KSG with Boolean KFF having almost arbitrary output and feedback functions where the only requirement is that the secret key incorporation is biased. We introduce an upper bound for the time complexity of the first algorithm. Our extensive experiments validate our algorithms and assumptions made thereof. 2) We study Sprout to show the effectiveness of our algorithms in a practical instance. A straightforward application of our generic algorithm yields one of the most successful attacks on Sprout

    Efficient Verifiable Partially-Decryptable Commitments from Lattices and Applications

    Get PDF
    We introduce verifiable partially-decryptable commitments (VPDC), as a building block for constructing efficient privacy-preserving protocols supporting auditability by a trusted party. A VPDC is an extension of a commitment along with an accompanying proof, convincing a verifier that (i) the given commitment is well-formed and (ii) a certain part of the committed message can be decrypted using a (secret) trapdoor known to a trusted party. We first formalize VPDCs and then introduce a general decryption feasibility result that overcomes the challenges in relaxed proofs arising in the lattice setting. Our general result can be applied to a wide class of Fiat-Shamir based protocols and may be of independent interest. Next, we show how to extend the commonly used lattice-based `Hashed-Message Commitment\u27 (HMC) scheme into a succinct and efficient VPDC. In particular, we devise a novel `gadget\u27-based Regev-style (partial) decryption method, compatible with efficient relaxed lattice-based zero-knowledge proofs. We prove the soundness of our VPDC in the setting of adversarial proofs, where a prover tries to create a valid VPDC output that fails in decryption. To demonstrate the effectiveness of our results, we extend a private blockchain payment protocol, MatRiCT, by Esgin et al. (ACM CCS \u2719) into a formally auditable construction, which we call MatRiCT-Au, with very low communication and computation overheads over MatRiCT

    An Injectivity Analysis of CRYSTALS-Kyber and Implications on Quantum Security

    Get PDF
    The One-Way to Hiding (O2H) Lemma is a central component of proofs of chosen-ciphertext attack (CCA) security of practical public-key encryption schemes using variants of the Fujisaki-Okamoto (FO) transform in the Quantum Random Oracle Model (QROM). Recently, Kuchta et al. (EUROCRYPT ’20) introduced a new QROM proof technique, called Measure-Rewind-Measure (MRM), giving an improved variant of the O2H lemma, with a new security reduction that does not suffer from a square-root advantage security loss as in the earlier work of Bindel et al. (TCC ’19).However, the FO transform QROM CCA security reduction based on the improved MRM O2H lemma still requires an injectivity assumption on the underlying CPA-secure determinstic public-key encryption scheme. In particular, the tightness of the concrete security reduction relies on a sufficiently small injectivity bound, and obtaining such bounds for concrete schemes was left as an open problem by Kuchta et al. (EUROCRYPT ’20). In this paper, we address the above problem by deriving concrete bounds on the injectivity of the deterministic CPA-secure variant of CRYSTALS-Kyber, the public-key encryption scheme selected for standardisation by the NIST Post-Quantum Cryptograpy (PQC) standardisation process. We evaluate our bounds numerically for the CRYSTALS-Kyber parameter sets, and show that the effect of injectivity on the tightness of the QROM CCA security of the Fujisaki-Okamoto transformed Kyber KEM is negligible, i.e. allows for a tight QROM CCA security reduction. Consequently, we give tightest QROM CCA security bounds to date for a simplified ‘single hashing’ variant of Kyber CCAKEM against attacks with low quantum circuit depth. Our bounds apply for all the Kyber parameter sets, based on the hardness of the Module Learning with Errors (MLWE) problem

    Private Re-Randomization for Module LWE and Applications to Quasi-Optimal ZK-SNARKs

    Get PDF
    We introduce the first candidate lattice-based Designated Verifier (DV) ZK-SNARK protocol with \emph{quasi-optimal proof length} (quasi-linear in the security/privacy parameter), avoiding the use of the exponential smudging technique. Our ZK-SNARK also achieves significant improvements in proof length in practice, with proofs length below 66 KB for 128-bit security/privacy level. Our main technical result is a new regularity theorem for `private\u27 re-randomization of Module LWE (MLWE) samples using discrete Gaussian randomization vectors, also known as a lattice-based leftover hash lemma with leakage, which applies with a discrete Gaussian re-randomization parameter that is polynomial in the statistical privacy parameter. To obtain this result, we obtain bounds on the smoothing parameter of an intersection of a random qq-ary SIS module lattice, Gadget SIS module lattice, and Gaussian orthogonal module lattice over standard power of 2 cyclotomic rings, and a bound on the minimum of module gadget lattices. We then introduce a new candidate \emph{linear-only} homomorphic encryption scheme called Module Half-GSW (HGSW), which is a variant of the GSW somewhat homomorphic encryption scheme over modules, and apply our regularity theorem to provide smudging-free circuit-private homomorphic linear operations for Module HGSW

    Efficient Hybrid Exact/Relaxed Lattice Proofs and Applications to Rounding and VRFs

    Get PDF
    In this work, we study hybrid exact/relaxed zero-knowledge proofs from lattices, where the proved relation is exact in one part and relaxed in the other. Such proofs arise in important real-life applications such as those requiring verifiable PRF evaluation and have so far not received significant attention as a standalone problem. We first introduce a general framework, LANES+, for realizing such hybrid proofs efficiently by combining standard relaxed proofs of knowledge RPoK and the LANES framework (due to a series of works in Crypto\u2720, Asiacrypt\u2720, ACM CCS\u2720). The latter framework is a powerful lattice-based proof system that can prove exact linear and multiplicative relations. The advantage of LANES+ is its ability to realize hybrid proofs more efficiently by exploiting RPoK for the high-dimensional part of the secret witness while leaving a low-dimensional secret witness part for the exact proof that is proven at a significantly lower cost via LANES. Thanks to the flexibility of LANES+, other exact proof systems can also be supported. We apply our LANES+ framework to construct substantially shorter proofs of rounding, which is a central tool for verifiable deterministic lattice-based cryptography. Based on our rounding proof, we then design an efficient long-term verifiable random function (VRF), named LaV. LaV leads to the shortest VRF outputs among the proposals of standard (i.e., long-term and stateless) VRFs based on quantum-safe assumptions. Of independent interest, we also present generalized results for challenge difference invertibility, a fundamental soundness security requirement for many proof systems

    MatRiCT: Efficient, Scalable and Post-Quantum Blockchain Confidential Transactions Protocol

    Get PDF
    We introduce MatRiCT, an efficient RingCT protocol for blockchain confidential transactions, whose security is based on ``post-quantum\u27\u27 (module) lattice assumptions. The proof length of the protocol is around two orders of magnitude shorter than the existing post-quantum proposal, and scales efficiently to large anonymity sets, unlike the existing proposal. Further, we provide the first full implementation of a post-quantum RingCT, demonstrating the practicality of our scheme. In particular, a typical transaction can be generated in a fraction of a second and verified in about 23 ms on a standard PC. Moreover, we show how our scheme can be extended to provide auditability, where a user can select a particular authority from a set of authorities to reveal her identity. The user also has the ability to select no auditing and all these auditing options may co-exist in the same environment. The key ingredients, introduced in this work, of MatRiCT are 1) the shortest to date scalable ring signature from standard lattice assumptions with no Gaussian sampling required, 2) a novel balance zero-knowledge proof and 3) a novel extractable commitment scheme from (module) lattices. We believe these ingredients to be of independent interest for other privacy-preserving applications such as secure e-voting. Despite allowing 64-bit precision for transaction amounts, our new balance proof, and thus our protocol, does not require a range proof on a wide range (such as 32- or 64-bit ranges), which has been a major obstacle against efficient lattice-based solutions. Further, we provide new formal definitions for RingCT-like protocols, where the real-world blockchain setting is captured more closely. The definitions are applicable in a generic setting, and thus are believed to contribute to the development of future confidential transaction protocols in general (not only in the lattice setting)

    DualRing: Generic Construction of Ring Signatures with Efficient Instantiations

    Get PDF
    We introduce a novel generic ring signature construction, called DualRing, which can be built from several canonical identification schemes (such as Schnorr identification). DualRing differs from the classical ring signatures by its formation of two rings: a ring of commitments and a ring of challenges. It has a structural difference from the common ring signature approaches based on accumulators or zero-knowledge proofs of the signer index. Comparatively, DualRing has a number of unique advantages. Considering the DL-based setting by using Schnorr identification scheme, our DualRing structure allows the signature size to be compressed into logarithmic size via an argument of knowledge system such as Bulletproofs. We further improve on the Bulletproofs argument system to eliminate about half of the computation while maintaining the same proof size. We call this Sum Argument and it can be of independent interest. This DL-based construction, named DualRing-EC, using Schnorr identification with Sum Argument has the shortest ring signature size in the literature without using trusted setup. Considering the lattice-based setting, we instantiate DualRing by a canonical identification based on M-LWE and M-SIS. In practice, we achieve the shortest lattice-based ring signature, named DualRing-LB, when the ring size is between 4 and 2000. DualRing-LB is also 5x faster in signing and verification than the fastest lattice-based scheme by Esgin et al. (CRYPTO\u2719)

    A New Look at Blockchain Leader Election: Simple, Efficient, Sustainable and Post-Quantum

    Get PDF
    In this work, we study the blockchain leader election problem. The purpose of such protocols is to elect a leader who decides on the next block to be appended to the blockchain, for each block proposal round. Solutions to this problem are vital for the security of blockchain systems. We introduce an efficient blockchain leader election method with security based solely on standard assumptions for cryptographic hash functions (rather than public-key cryptographic assumptions) and that does not involve a racing condition as in Proof-of-Work based approaches. Thanks to the former feature, our solution provides the highest confidence in security, even in the post-quantum era. A particularly scalable application of our solution is in the Proof-of-Stake setting, and we investigate our solution in the Algorand blockchain system. We believe our leader election approach can be easily adapted to a range of other blockchain settings. At the core of Algorand\u27s leader election is a verifiable random function (VRF). Our approach is based on introducing a simpler primitive which still suffices for the blockchain leader election problem. In particular, we analyze the concrete requirements in an Algorand-like blockchain setting to accomplish leader election, which leads to the introduction of indexed VRF (iVRF). An iVRF satisfies modified uniqueness and pseudorandomness properties (versus a full-fledged VRF) that enable an efficient instantiation based on a hash function without requiring any complicated zero-knowledge proofs of correct PRF evaluation. We further extend iVRF to an authenticated iVRF with forward-security, which meets all the requirements to establish an Algorand-like consensus. Our solution is simple, flexible and incurs only a 32-byte additional overhead when combined with the current best solution to constructing a forward-secure signature (in the post-quantum setting). We implemented our (authenticated) iVRF proposal in C language on a standard computer and show that it significantly outperforms other quantum-safe VRF proposals in almost all metrics. Particularly, iVRF evaluation and verification can be executed in 0.02 ms, which is even faster than ECVRF used in Algorand

    BlindHub: Bitcoin-Compatible Privacy-Preserving Payment Channel Hubs Supporting Variable Amounts

    Get PDF
    Payment Channel Hub (PCH) is a promising solution to the scalability issue of first-generation blockchains or cryptocurrencies such as Bitcoin. It supports off-chain payments between a sender and a receiver through an intermediary (called the tumbler). Relationship anonymity and value privacy are desirable features of privacy-preserving PCHs, which prevent the tumbler from identifying the sender and receiver pairs as well as the payment amounts. To our knowledge, all existing Bitcoin-compatible PCH constructions that guarantee relationship anonymity allow only a (predefined) fixed payment amount. Thus, to achieve payments with different amounts, they would require either multiple PCH systems or running one PCH system multiple times. Neither of these solutions would be deemed practical. In this paper, we propose the first Bitcoin-compatible PCH that achieves relationship anonymity and supports variable amounts for payment. To achieve this, we have several layers of technical constructions, each of which could be of independent interest to the community. First, we propose BlindChannel\textit{BlindChannel}, a novel bi-directional payment channel protocol for privacy-preserving payments, where {one of the channel parties} is unable to see the channel balances. Then, we further propose BlindHub\textit{BlindHub}, a three-party (sender, tumbler, receiver) protocol for private conditional payments, where the tumbler pays to the receiver only if the sender pays to the tumbler. The appealing additional feature of BlindHub is that the tumbler cannot link the sender and the receiver while supporting a variable payment amount. To construct BlindHub, we also introduce two new cryptographic primitives as building blocks, namely Blind Adaptor Signature\textit{Blind Adaptor Signature}(BAS), and Flexible Blind Conditional Signature\textit{Flexible Blind Conditional Signature}. BAS is an adaptor signature protocol built on top of a blind signature scheme. Flexible Blind Conditional Signature is a new cryptographic notion enabling us to provide an atomic and privacy-preserving PCH. Lastly, we instantiate both BlindChannel and BlindHub protocols and present implementation results to show their practicality

    A Survey on Exotic Signatures for Post-Quantum Blockchain: Challenges & Research Directions

    Get PDF
    Blockchain technology provides efficient and secure solutions to various online activities by utilizing a wide range of cryptographic tools. In this paper, we survey the existing literature on post-quantum secure digital signatures that possess exotic advanced features and which are crucial cryptographic tools used in the blockchain ecosystem for (i) account management, (ii) consensus efficiency, (iii) empowering scriptless blockchain, and (iv) privacy. The exotic signatures that we particularly focus on in this work are the following: multi-/aggregate, threshold, adaptor, blind and ring signatures. Herein the term exotic refers to signatures with properties which are not just beyond the norm for signatures e.g. unforgeability, but also imbue new forms of functionalities. Our treatment of such exotic signatures includes discussions on existing challenges and future research directions in the post-quantum space. We hope that this article will help to foster further research to make post-quantum cryptography more accessible so that blockchain systems can be made ready in advance of the approaching quantum threats
    corecore